博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
Redis源码分析
阅读量:6504 次
发布时间:2019-06-24

本文共 7692 字,大约阅读时间需要 25 分钟。

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/feilengcui008/article/details/51534406

这一篇或者说一个系列用来记录Redis相关的一些源码分析,不定时更新。

目前已添加的内容:

  • Redis之eventloop
  • Redis数据结构之dict

Redis之eventloop

简介

Redis的eventloop实现也是比较平常的,主要关注文件描述符和timer相关事件,而且timer只是简单用一个单链表(O(n)遍历寻找最近触发的时间)实现。

流程

  • 主要在initServer(server.c)中初始化整个eventloop相关的数据结构与回调
// 注册系统timer事件if (aeCreateTimeEvent(server.el, 1, serverCron, NULL, NULL) == AE_ERR) {  serverPanic("Can't create event loop timers.");  exit(1);}// 注册poll fd的接收客户端连接的读事件for (j = 0; j < server.ipfd_count; j++) {  if (aeCreateFileEvent(server.el, server.ipfd[j], AE_READABLE,        acceptTcpHandler,NULL) == AE_ERR)  {    serverPanic(        "Unrecoverable error creating server.ipfd file event.");  }}// 同上if (server.sofd > 0 && aeCreateFileEvent(server.el,server.sofd,AE_READABLE,      acceptUnixHandler,NULL) == AE_ERR) serverPanic("Unrecoverable error creating server.sofd file event.");
  • acceptTcpHandler处理客户端请求,分配client结构,注册事件
cfd = anetTcpAccept(server.neterr, fd, cip, sizeof(cip), &cport);acceptCommonHandler(cfd,0,cip);
  • createClient,创建客户端
// receieved a client, alloc client structure // and register it into eventpollclient *createClient(int fd) {client *c = zmalloc(sizeof(client));if (fd != -1) {  anetNonBlock(NULL,fd);  anetEnableTcpNoDelay(NULL,fd);  if (server.tcpkeepalive)    anetKeepAlive(NULL,fd,server.tcpkeepalive);  // register read event for client connection  // the callback handler is readQueryFromClient  // read into client data buffer  if (aeCreateFileEvent(server.el,fd,AE_READABLE,        readQueryFromClient, c) == AE_ERR)  {    close(fd);    zfree(c);    return NULL;  }}
  • client读事件触发,读到buffer,解析client命令
dQueryFromClient(aeEventLoop *el, int fd, void *privdata, int mask) --> processInputBuffer // handle query buffer// in processInputBuffer(c);if (c->reqtype == PROTO_REQ_INLINE) {    if (processInlineBuffer(c) != C_OK) break;} else if (c->reqtype == PROTO_REQ_MULTIBULK) {    if (processMultibulkBuffer(c) != C_OK) break;} else {    serverPanic("Unknown request type");}/* Multibulk processing could see a <= 0 length. */if (c->argc == 0) {    resetClient(c);} else {    /* Only reset the client when the command was executed. */    // handle the client command     if (processCommand(c) == C_OK)        resetClient(c);    /* freeMemoryIfNeeded may flush slave output buffers. This may result     * into a slave, that may be the active client, to be freed. */    if (server.current_client == NULL) break;}
  • 处理客户端命令
// in processCommand /* Exec the command */if (c->flags & CLIENT_MULTI &&    c->cmd->proc != execCommand && c->cmd->proc != discardCommand &&    c->cmd->proc != multiCommand && c->cmd->proc != watchCommand){    queueMultiCommand(c);    addReply(c,shared.queued);} else {    // call the cmd     // 进入具体数据结构的命令处理    call(c,CMD_CALL_FULL);    c->woff = server.master_repl_offset;    if (listLength(server.ready_keys))        handleClientsBlockedOnLists();}

其他注意点

  • 关于timer的实现没有采用优先级队列(O(logn))等其他数据结构,而是直接采用O(n)遍历的单链表,是因为一般来说timer会较少?

Redis数据结构之dict

主要特点

Redis的hashtable实现叫dict,其实现和平常没有太大的区别,唯一比较特殊的地方是每个dict结构内部有两个实际的hashtable结构dictht,是为了实现增量哈希,故名思义,即当第一个dictht到一定负载因子后会触发rehash,分配新的dictht结构的动作和真正的rehash的动作是分离的,并且rehash被均摊到各个具体的操作中去了,这样就不会长时间阻塞线程,因为Redis是单线程。另外,增量hash可以按多步或者持续一定时间做。

主要数据结构

  • dictEntry => hashtable的bucket
  • dictType => 规定操作hashtable的接口
  • dictht => hashtable
  • dict => 对外呈现的”hashtable”
  • dictIterator => 迭代器,方便遍历
// dict.h// hash table entry typedef struct dictEntry {    void *key;  // key     union {        void *val;        uint64_t u64;        int64_t s64;        double d;    } v;  // value    struct dictEntry *next;  // linked list } dictEntry;// operations(APIS) of some type of hashtabletypedef struct dictType {    // hash function     unsigned int (*hashFunction)(const void *key);    // copy key     void *(*keyDup)(void *privdata, const void *key);    // copy value     void *(*valDup)(void *privdata, const void *obj);    // key comparison     int (*keyCompare)(void *privdata, const void *key1, const void *key2);    // dtor for key     void (*keyDestructor)(void *privdata, void *key);    // dtor for value     void (*valDestructor)(void *privdata, void *obj);} dictType;/* This is our hash table structure. Every dictionary has two of this as we * implement incremental rehashing, for the old to the new table. */// a hashtable typedef struct dictht {    dictEntry **table;  // entries     unsigned long size;  // max size     unsigned long sizemask;  // mask     unsigned long used;  // current used } dictht;typedef struct dict {    dictType *type;  // type operations     void *privdata;  // for extension     dictht ht[2];    // two hashtables     // rehashing flag    long rehashidx; /* rehashing not in progress if rehashidx == -1 */    // users number     unsigned long iterators; /* number of iterators currently running */} dict;/* If safe is set to 1 this is a safe iterator, that means, you can call * dictAdd, dictFind, and other functions against the dictionary even while * iterating. Otherwise it is a non safe iterator, and only dictNext() * should be called while iterating. */typedef struct dictIterator {    dict *d;    long index;    int table, safe;    dictEntry *entry, *nextEntry;    /* unsafe iterator fingerprint for misuse detection. */    long long fingerprint;} dictIterator;

主要接口

// dict.h// createdict *dictCreate(dictType *type, void *privDataPtr);// expand or initilize the just created dict, alloc second hashtable of dict for incremental rehashingint dictExpand(dict *d, unsigned long size);// add, if in rehashing, do 1 step of incremental rehashingint dictAdd(dict *d, void *key, void *val);dictEntry *dictAddRaw(dict *d, void *key);// update, if in rehashing, do 1 step of incremental rehashing// can we first find and return the entry no matter it is update or add, so // we can speed up the update process because no need to do twice find process?int dictReplace(dict *d, void *key, void *val);dictEntry *dictReplaceRaw(dict *d, void *key);// delete if in rehashing, do 1 step of incremental rehashingint dictDelete(dict *d, const void *key);  // free the memory int dictDeleteNoFree(dict *d, const void *key);  // not free the memory// can we use a double linked list to free the hash table, so speed up?void dictRelease(dict *d);// find an entrydictEntry * dictFind(dict *d, const void *key);void *dictFetchValue(dict *d, const void *key);// resize to eh pow of 2 number just >= the used number of slotsint dictResize(dict *d);// alloc a new iteratordictIterator *dictGetIterator(dict *d);// alloc a safe iterator dictIterator *dictGetSafeIterator(dict *d);// next entry dictEntry *dictNext(dictIterator *iter);void dictReleaseIterator(dictIterator *iter);// random samplingdictEntry *dictGetRandomKey(dict *d);unsigned int dictGetSomeKeys(dict *d, dictEntry **des, unsigned int count);// get stats infovoid dictGetStats(char *buf, size_t bufsize, dict *d);// murmurhash unsigned int dictGenHashFunction(const void *key, int len);unsigned int dictGenCaseHashFunction(const unsigned char *buf, int len);// empty a dict void dictEmpty(dict *d, void(callback)(void*));void dictEnableResize(void);void dictDisableResize(void);// do n steps rehashingint dictRehash(dict *d, int n);// do rehashing for a ms millisecondsint dictRehashMilliseconds(dict *d, int ms);// hash function seed void dictSetHashFunctionSeed(unsigned int initval);unsigned int dictGetHashFunctionSeed(void);// scan a dictunsigned long dictScan(dict *d, unsigned long v, dictScanFunction *fn, void *privdata);

一些可能优化的地方

  • 在dictReplace中能否统一add和update的查找,无论是add还是update都返回一个entry,用标识表明是add还是update,而不用在update时做两次查找,从而提升update的性能

  • 在release整个dict时,是循环遍历所有头bucket,最坏情况接近O(n),能否用双向的空闲链表优化(当然这样会浪费指针所占空间)

你可能感兴趣的文章
「镁客·请讲」翼辉信息黄晓清:国产系统需有自己的灵魂,一行一行去码并不可怕...
查看>>
【软件】Eclipse 下载
查看>>
阿里云全球19个地域节点,哪个节点的服务器好,速度快?
查看>>
PostgreSQL 9.6 for Centos7.4 最佳实践安装
查看>>
java B2B2C Springcloud电子商务平台源码 -Feign之源码解析
查看>>
Unity C#编程优化——枚举
查看>>
熊先生做原型之:简单、粗暴、有效
查看>>
TensorFlow系列专题(三):深度学习简介
查看>>
Unity Excel转Json小工具excel2json
查看>>
(十三)Java springcloud B2B2C o2o多用户商城 springcloud架构 - SSO单点登录之OAuth2.0 根据token获取用户信息(4)...
查看>>
切割Nginx日志的脚本
查看>>
19.7 主动模式和被动模式;19.8 添加监控主机;19.9 添加自定义模板;19.10 处理图形中的乱码;19.11...
查看>>
解决FTP服务器命令好使,工具不好使。
查看>>
awk工具(三剑客)
查看>>
Log4j 2 + Slf4j 的配置和使用Apache
查看>>
一次arp防护配置错误导致的故障
查看>>
apt-get install 报错解决办法: Unmet dependencies. Try 'apt-get -f install' with no packages
查看>>
一次反向代理负载均衡的处理过程
查看>>
CentOS.6.6中 PHP-5.5.38安装配置
查看>>
WebDNN:浏览器上运行的最快DNN执行框架(Macbook也行)
查看>>